
An Efficient Community-Aware Pre-training Method for
Graph Neural Networks

Zhenhua Huanga,b,c,1, Wenhao Zhoua,1, Yihang Jianga,b, Zhaohong Jiaa, Linyuan Lüb,c,
Yunjie Mac,d

aAnhui University, Hefei, 230039, China
bUniversity of Science and Technology of China, 230026, Hefei, China

cDataspace Institute of Hefei Comprehensive National Science Center, 230029, Hefei, China
dHefei University of Technology, 230009, Hefei, China

Abstract

While graph neural networks (GNNs) have demonstrated widespread success in var-

ious domains, their pre-training techniques lag behind those in computer vision and

natural language processing, typically exhibiting limited performance gains and high

computational costs. This paper introduces Community-Aware Pre-training (CAP),

a novel approach that leverages the inherent community structures prevalent in real-

world networks to enhance GNN pre-training efficiency and effectiveness. CAP em-

ploys a self-supervised contrastive learning framework to learn node representations

that are highly discriminative of their respective communities. To further optimize the

pre-training process, we introduce a Monte Carlo Tree Search-based community sam-

pler that efficiently extracts representative subgraphs, mitigating noise and enhancing

sample quality. CAP is versatile and can be applied to a broad range of node clas-

sification tasks due to the commonly existing community structures within networks.

Extensive evaluations on diverse node classification benchmarks demonstrate that CAP

consistently outperforms state-of-the-art methods, achieving accuracy improvements

of up to 4.34% while significantly reducing pre-training time by up to 14.87 times

compared to existing techniques. Furthermore, CAP enhances the predictive confi-

dence and visualization distinctiveness of node representations, paving a new path for

Email addresses: zhhuangscut@gmail.com (Zhenhua Huang), wenhaozhou@stu.ahu.edu.cn
(Wenhao Zhou), yihangjiangahu@gmail.com (Yihang Jiang), zhjia@mail.ustc.edu.cn (Zhaohong
Jia), linyuan.lv@ustc.edu.cn (Linyuan Lü), ma.yunjie@foxmail.com (Yunjie Ma)

1This is the first author footnote.

Preprint submitted to Elsevier June 9, 2025

effective and efficient GNN pre-training.

1. Introduction

Graph-based pattern recognition has emerged as a powerful tool for analyzing data

structured in graph form, to which Prof. Edwin R. Hancock has dedicated signifi-

cant research efforts. His seminal work on representation learning in the node [1] and

graph domain [2] has made outstanding contributions to the field. In this paper, we

delve deeper into his research domain, particularly focusing on graph neural networks

(GNNs), which find applications in diverse domains. However, unlike the significant

advancements in pre-training techniques witnessed in computer vision [3] and natu-

ral language processing [4], GNN pre-training remains relatively underexplored, with

substantial room for improvement in both performance and efficiency. This challenge

arises from the unique characteristics of graph data, particularly their non-Euclidean

structure and varying semantics across datasets, which hinder the direct transferability

of pre-training strategies commonly employed for text and images [5].

Despite these hurdles, recent years have seen notable progress in GNN pre-training.

Early works like Hu et al. [6] proposed integrating node and graph-level informa-

tion during pre-training to enhance generalization and transferability across different

molecular structures. You et al. [7] further explored this direction by introducing

graph data augmentation strategies for pre-training. Similarly, Xia et al. [8] proposed

novel techniques for molecular graph pre-training, including atom vocabulary expan-

sion and representation refinement tasks. While these methods have shown promise

on specific graph prediction tasks, their applicability remains limited to certain dataset

types. To address cross-domain pre-training, GCC [9] leverages contrastive learning

to discover structural patterns across diverse network structures. GPPT [10] introduces

masked edge prediction for GNN pre-training, converting nodes into token pairs for

node classification. GSR [11] employs multi-view contrastive learning for link pre-

diction and graph structure refinement, fine-tuning the pre-trained model for down-

stream tasks. GraphPrompt [12] unifies pre-training and downstream tasks into a com-

mon template using task-specific prompt vectors, while All-in-One [13] reformulates

2

Figure 1: Community structures within networks. Nodes in two communities are depicted in blue and green,
and dark blue and green highlight the presence of densely connected substructures (”cores”) within each
community.

different-level tasks into a unified representation and utilizes a meta-learning technique

for prompt graph design. Although these methods reduce the data and training re-

quirements for downstream tasks through fine-tuning, they typically rely on intricate

pre-training strategies, leading to high computational costs and limited accuracy im-

provements in some cases.

Despite being a ubiquitous feature of real-world networks, community structures

have often been overlooked in the design of current graph neural networks [14], as

illustrated in Fig. 1. Communities, characterized as cohesive groups of densely inter-

connected nodes within a network [15], hold significant real-world implications across

diverse domains [16]. The presence of community structures underscores the existence

of rich structural information within graphs, reflecting the inherent complexity and

depth of the network topology. Within communities, densely connected substructures

known as ”cores” often emerge, serving as essential backbones for community forma-

tion and functionality [17]. These cores, characterized by their high internal connec-

tivity, act as primary conduits for information exchange among community members.

Understanding these core structures is crucial for developing effective graph analy-

sis models. Leveraging the inherent community patterns, particularly these informa-

tive core structures, during GNN pre-training holds significant potential for enhancing

model performance.

Leveraging the pervasiveness and informativeness of community structures, we

propose a Community-Aware Pre-training (CAP) method of GNNs. CAP aims to learn

node representations with enhanced community discriminative power. To achieve this,

3

we leverage contrastive learning, a self-supervised approach that encourages represen-

tations of nodes within the same community to be closer while pushing apart those

from different communities. The universality of community structures makes CAP

broadly applicable to a wide range of node classification datasets. However, com-

munity detection methods often yield noisy structures with varying node sizes, and

simply merging community information with GNN [18] produces limited performance

gains. Inspired by the concept of cores of communities [17], we introduce a community

sampler to identify the representative substructures within communities to reduce the

noisy community information in contrastive learning. Unlike conventional pre-training

methods that require extensive fine-tuning on large-scale datasets before adaptation to

task-specific datasets, the pre-training task of CAP necessitates minimal adjustment,

enabling efficient transfer to downstream tasks with a few fine-tuning steps while still

achieving competitive performance.

Extensive experiments demonstrate that CAP consistently enhances GNN perfor-

mance on node classification tasks, achieving state-of-the-art accuracies with improve-

ments of up to 4.34%. Moreover, CAP exhibits significantly lower time consumption

than existing pre-training strategies, reducing training time by up to 14.87 times faster

than existing techniques. Empirical evidence also reveals that CAP leads to improved

predictive confidence, as evidenced by higher and more concentrated confidence distri-

butions than its backbone models. The efficacy of CAP is further investigated through

visualizations of node representations and real-world case studies.

This paper makes the following key contributions:

• Community-Aware Pre-training for GNNs: We present CAP, an innovative

GNN pre-training framework that explicitly utilizes the inherent community

structures in graphs. CAP uses a contrastive learning approach to enhance node

representations with improved community discriminative power, facilitating ef-

fective generalization across various datasets.

• Efficient Community Sampling: We introduce a novel community sampler that

efficiently extracts representative community information while reducing noise

impact. This sampler significantly boosts the effectiveness and efficiency of the

4

CAP pre-training process, accelerating computations by up to 4.53 times com-

pared to the baseline sampler.

• Extensive Experimental Validation: We perform comprehensive experiments

on seven real-world datasets, showing that CAP consistently surpasses state-of-

the-art GNN models and existing pre-training methods. CAP achieves notable

accuracy improvements (up to 4.34%) and substantially reduces training time

(up to 14.87 times faster).

2. Related Works

2.1. Graph Neural Networks

GNNs represent a specialized category of deep neural networks tailored for han-

dling data structured in graphs, a domain to which Professor Edwin R. Hancock has

dedicated research efforts. The field of GNNs encompasses a rich diversity of archi-

tectures, each with unique strengths and characteristics. Notable examples include

GCN [19], which leverages neighbor-to-neighbor information propagation; and GAT

[20], which introduces a self-attention mechanism to aggregate node features with ad-

justable weights. GraphSage [21] utilizes localized neighborhood sampling and aggre-

gation to generate novel data embeddings. Further advancements include FusedGAT

[22], which optimizes GAT for reduced computational and memory requirements. The

ASDGN [23] draws inspiration from ordinary differential equations to provide a sta-

ble and non-dissipative framework for designing deep GNNs. SGCN [24] introduces

graph-shaped kernels to perform multichannel convolutions on subgraph structures.

Wang et al. [25] proposed heterophily-aware graph attention networks to adaptively

assign weights to different types, breaking the limitations of graph attention networks

to handle heterophilic graphs. Furthermore, a growing body of research focuses on

enhancing the interpretability of GNNs [26, 27], aiming to elucidate their decision-

making processes. More papers about GNN can be referred to the recent review paper

by Xu et al. [28].

2.2. Community Detection

Community detection, a fundamental problem in network analysis and graph the-

ory [14], aims to uncover the underlying community structure within networks. It finds

5

diverse applications, such as targeted advertising in social networks and identifying

research trends in citation networks. Numerous techniques and algorithms have been

developed for community detection, which can be broadly categorized based on their

underlying principles [29]. Modularity-based methods, such as the Louvain method

[30], seek to maximize a modularity function to determine optimal community assign-

ments. Information-theoretic methods, exemplified by Infomap [31], employ random

walks to minimize the expected description length of community structures. Label

propagation algorithms [32] iteratively assign labels to nodes based on the majority

labels of their neighbors. Spectral clustering techniques [33] leverage eigenvectors of

similarity matrices to identify communities. More recently, deep learning approaches

have been explored, utilizing neural networks [34] and embedding techniques [35] for

community detection. To the best of our knowledge, this paper presents the first inves-

tigation into leveraging community structures for GNN pre-training.

2.3. Pre-training on Graphs

Pre-training involves training a model on a large corpus of unlabeled data to learn

general representations of the input data. Traditional pre-training tasks have demon-

strated significant progress in the fields of computer vision and natural language pro-

cessing. However, due to the unique characteristics of graph-structured data, tradi-

tional pre-training methods cannot be directly applied to graphs. GCC [9] employs

contrastive learning to discover patterns in diverse network structures, addressing the

cross-domain pre-training challenge in graph learning. GPPT [10] integrates features

and structure by utilizing masked edge prediction to pre-train graph neural networks.

These methods introduce graph-based prompts, transforming individual nodes into to-

ken pairs and redefining downstream node classification tasks. GSR [11] employs a

multi-view contrastive learning approach for graph structure estimation via link pre-

diction during the pre-training phase, followed by structure refinement through prob-

abilistic edge modification. Fine-tuning involves initializing a GNN with this model

for downstream task optimization. GraphPrompt [12] is a novel framework that en-

hances graph neural networks by unifying tasks into a common template and using

task-specific prompt vectors. All-in-One [13] reformulates different-level tasks into

6

unified ones and designs an effective prompt graph with a meta-learning technique.

HGPROMPT [36] unifies not only pre-training and downstream tasks but also ho-

mogeneous and heterogeneous graphs via a dual-template design. AAGCN [37] is

a dropout-based augmentation framework that incorporates traditional graph augmen-

tation methods into a mathematical model, allowing adaptive learning of mask matrices

for node and edge feature augmentation. This framework can be easily integrated into

existing graph neural networks.

These models, based on the pre-training and fine-tuning architecture [4], require

the design of complex pre-training tasks, leading to extended pre-training times. Ad-

ditionally, they perform well on a limited subset of datasets and frequently encounter

issues with negative transfer.

3. Problem Defnition

GNNs are leveraged for various classical tasks in graph-based learning, such as

node classification, graph classification, and link prediction. In this paper, we focus

solely on the node classification task. Node classification involves assigning a categor-

ical label to each node in a graph, which can be formally defined as follows:

Let G = (V, E) be a graph where V denotes the set of nodes and E the set of edges.

Each node v ∈ V is associated with a label yv from a set of labels Y . The goal of node

classification is to learn a function f that maps nodes to their respective labels:

f : V → Y, f (v) = arg max
y∈Y

P(y|N(v); θ f) (1)

where N(v) denotes the neighborhood of the node v in the graph G, and θ f repre-

sents the parameters of the function f , learned during the training process. The function

f is designed to maximize the conditional probability P of the correct label y given the

features of the node v and its neighborhood, parameterized by θ f .

In this process, the constraint of having labels for training is fundamental. How-

ever, pre-training on graphs can be performed in an unsupervised manner, extracting

rich feature representations from the graph structure without the need for labels. To

this end, it is essential to design self-supervised pre-training tasks that generate embed-

dings conducive to the downstream task. Such a pre-training task can be represented

7

Input Graph

Graph
Encoder

Pre-Training

1
0
0

Softmax

Output

Community
Detection

Community
Samlper

Construct
 pairs

GNN Layer

GNN Layer

Classification Task

O
pt

im
iz

e

O
pt

im
iz

e

Figure 2: Framework of CAP.

by a function T that operates on the graph and returns a parameter Θ, which can be

formalized as:

T : (G,Φ)→ Θ, Θ = {θ(1)
f , θ

(2)
f , . . . , θ

(n)
f } (2)

where Φ represents a set of transformations applied to graph G, and Θ is a set of

learned parameters corresponding to each transformation in Φ. The function T maps

the graph G under transformations Φ to a parameter space Θ, optimizing a prede-

fined loss function L, which measures the effectiveness of these parameters for the

downstream tasks. This parameter Θ guides the optimization of the downstream task,

enhancing the performance of the node classification model by providing pre-trained

embeddings that encapsulate the intrinsic properties of the graph.

4. Community-Aware Pre-Training Graph Neural Networks

4.1. Community-Aware Pre-Training Task

In community-aware pre-training, the initial step involves using a community sam-

pler to extract crucial subgraphs from communities. Subsequently, positive and nega-

tive node representations are generated for each node in the dataset based on these sub-

graphs and the node representations constructed by the graph encoder. An InfoNCE

loss is employed to optimize the parameters of the graph encoder, which are subse-

quently utilized in downstream prediction tasks. The overall framework of CAP is

illustrated in Fig. 2.

8

4.1.1. Community and Subgraphs Sampling

Community Detection: Community detection is a fundamental task in network

analysis aimed at revealing underlying structures within networks. Given an input

graph G(V, A), community detection returns community list C. This paper compares

two classical non-overlapping community detection approaches: modularity-based [15]

and label propagation-based [32]. The modularity-based approach evaluates the quality

of a community partition by quantifying modularity, striving to maximize this metric

to achieve an optimal partition. The Louvain method [30] is representative of this

category. The label propagation-based approach operates by updating the labels of un-

labeled nodes based on the label information of their neighboring nodes, iteratively

propagating labels throughout the network until convergence. The Label Propagation

Algorithm (LPA) [32] is a classic method in this category.

Community Sampler: Communities consist of core nodes, overlapping nodes, and

periphery nodes with noisy data. We have devised a community sampler tailored to ex-

tract the most representative structural subgraphs within a community and mitigate the

impact of noisy information. For each community C, the community sampler initiates

the sampling process by first selecting the node with the highest degree vc as the cen-

tral node. Subsequently, the sampler extends this subgraph by iteratively adding nodes

directly connected to it within the community. During each expansion step, nodes are

selected from the community based on their immediate connection to the subgraph,

and their impact on the modularity Q of the subgraph is computed as a measure of their

importance [15]:

Q =
nc∑

c=1

(
lc
M
− (

dc

2M
)2), (3)

where nc is the number of communities, lc is the number of edges within the commu-

nity, and dc is the sum of the degrees of all nodes in the community c, M denotes the

total number of edges in the graph.

The node with the largest impact is selected in the subgraph, concluding that par-

ticular expansion step. The sampling process within the community continues until

the subgraph reaches a predefined scale S , signifying the completion of community

sampling.

9

Algorithm 1 Community Sampler.

Input: Community list Clist, subgraph scale S .
Output: Sampled subgraph list G.

for C in Clist do
Initialize empty graph Gi;
Choose center node vc with the highest degree;
Gi ← Gi + vc;
while len(Gi) < S do

Qc ←Modularity(C);
Initialize list score
while vi ∈ C do

if vi not in Gi and have edge(vi,Gi) then
Gnew ← Gi + vi;
scorei ← Qc −Modularity(C − Gnew);

end if
end while
Obtain the best node vbest with max(score);
Gi ← Gi + vbest;

end while
end for
return The subgraph list G;

To optimize the computational efficiency of the community sampler, we employed

a strategy based on the Monte Carlo Tree Search (MCTS). The utilization of MCTS

allows for a reduction in time consumption by constraining the number of iterations.

Specifically, we build a search tree where the root is associated with the input graph

and each other node corresponds to a connected subgraph. Each edge in the search tree

indicates that the graph associated with a child node can be obtained by performing

node-pruning from the graph associated with its parent node. We define the impor-

tance score R of each node in the search tree Ni as the decrease in modularity of the

community when the node is removed from the corresponding subgraph, which can be

computed using the following formula:

R(Ni) =
Q(C) − Q(C −G(Ni))

Q(C)
, (4)

Formally, for node Ni the action selection criteria of node N j are defined as:

a∗ =
W(N j)
C(N j)

+ αR(N j)

√
log(C(Ni))

C(N j)
, (5)

10

where W(Ni) represents the total reward for all visits to Ni, C(Ni) representing the

number of times Ni being selected, α is a hyperparameter to control the trade-off be-

tween exploration and exploitation. After each expansion step, W(Ni) is incremented

by R(Ni), and C(Ni) is increased by one. The procedures of the community sampler

are summarized in Algorithm 1.

4.1.2. Contrast Learning on Community

Graph Encoder: We employ GCN [19] and GAT [38] as backbone graph encoders

to obtain node representations. Given an undirected graph G with the node feature

matrix X ∈ RN×C and adjacency matrix A ∈ RN×N , the propagation process of an

L-layer GCN is represented as:

Xl+1 = σ
(
D̂−

1
2 ÂD̂−

1
2 XlW l

)
, (6)

where Xl denotes the representation of layer l, σ is the non-linear activation function.

W are learnable weight matrices. For GAT, propagation of the lth layer is represented

as:

Xl+1 = ELU

 N∑
i=1

∑
j∈N(i)

αi jW lxl
j

 ,
αi j =

exp
(
σ
(
aT [W lxl

i∥W
lxl

j]
))

∑
k ∈ N(i) exp

(
σ
(
aT [W lxl

i∥W
lxl

k]
)) , (7)

The attention coefficient αi j determines the contribution of node j to node i when ag-

gregating features from the neighboring nodes. The set N(i) represents the collection

of neighbor nodes of node i.

The output of the last layer of Graph Encoder is denoted as H ∈ RN×Cout , Cout

represents the dimension of the node representations in the final layer.

Positive and Negative Pairs: We consider each node vi in the graph as an anchor

point and select k positive sample pairs from nodes within the same community (se-

lected via Community Sampler) to form its positive sample set Vp(vi) and k negative

sample pairs from nodes belonging to different communities to constitute its negative

sample set Vn(vi).

11

In the pre-training loss formulation, we use Ha to represent the anchor represen-

tations, which are equivalent to X. Based on the node sets Vp and Vn, we obtain the

positive representation Hp and negative representation Hn for the corresponding nodes

from the results of graph encoding. where each element in Hp or Hn is hi ∈ R
k×Cout .

Pre-Training Loss: We use InfoNCE loss to calculate the intrinsic dissimilarities

between these samples. The loss function is as follows:

LInfoNCE = − log
∑N

i=0 exp(s(hi, h+i)/τ)∑N
i=0 exp(s(hi, h+i) +

∑N
i=0 exp(s(hi, h−i)/τ)

(8)

s(hi, h+i) denotes the similarity between the anchor vector hi and the positive sam-

ple vector h+i . The similarity function (sim) could be a dot product or cosine similarity.

s(hi, h−i) denotes the similarity between the anchor vector hi and the negative sample

vector h−i . τ is the temperature parameter that controls the scaling of the similari-

ties. It helps in smoothing the distribution of the similarities. The objective of the

loss is to minimize the distance between positive samples, ensuring their proximity in

the learned embedding space, while simultaneously maximizing the distance between

negative samples, promoting their distinctiveness.

4.2. Supervised Node-Level Property Prediction

After community-aware pre-training, we obtain the parameters of the graph en-

coder. These parameters are employed to initialize the prediction model. The model is

then trained using label information, allowing us to make node-level predictions.

The prediction model is consistent with the graph encoder employed in the pre-

training task. The result of graph encoder Hc is used to predict the label after a fully

connected layer, and the model’s prediction Ŷ ∈ RN×M is obtained after a S o f tmax, O

is the number of output label, Wc is the parameters.

Ŷ = S o f tmax(WcHc + Bc), (9)

The loss function for the prediction is:

Lxent = −
∑
v∈V

O∑
i=1

Y ln Ŷ + λ∥θ∥2, (10)

where λ denotes a regularization parameter and θ denotes the parameters of the model.

The whole process of CAP is summarized in Algorithm 2.

12

Algorithm 2 Framework of CAP.

Input: Graph G(V, X, A), subgraph scale S .
Output: Predictions Ŷ .

Obtain Clist by Community Detection(G);
Obtain G by Community Sampler(Clist, S);
while epochs < pretrain epochs do

H ← Graph Encoder(X, A);
Hp, Hn ← Split(H);
Update We in Graph Encoder by Eq. 8;

end while
Initialize the classification model GNN by We;
while not conerged do

Hc ← GNN(X, A);
Ŷ ← Softmax(WcHc + Bc);
Update GNN parameters by Eq. 10;

end while
return Predictions Ŷ;

4.3. Time Complexity Analysis

We analyze CAP’s time complexity, focusing on its crucial component: the com-

munity sampler.

Base Community Sampler: For each of the |Clist| communities, the base sampler

iterates until the subgraph size reaches S . In each iteration, the algorithm: 1) Select

Nodes: Given the variable number of candidate nodes expanded, we approximate the

analysis of edges around each node using the node-edge density β = |E|/|V |. The

selection process runs O(S ×β) times. 2) Calculates Modularity: This step has a O(|Ec|)

complexity, where |Ec| denotes the number of edges in the community C. Therefore,

the base community sampler’s time complexity is O(
∑
C∈Clist

S 2 × β × |Ec|).

MCTS-Based Community Sampler: For each community, the MCTS sampler

performs I iterations. Each iteration consists of: 1) Tree Policy: Traversing the MCTS

tree to a non-leaf node (potentially expanding a new node) takes O(S) time, as the

tree depth is proportional to the subgraph size S . 2) Node Expansion: Selecting and

expanding a node takes O(1) time due to the random selection process. 3) Backprop-

agation and Subgraph Selection: Updating nodes along the tree to the root node takes

O(S) time. Traversing the tree to select the optimal subgraph also takes O(S) time.

4) Modularity Calculation: This step has a O(|Ec|) complexity. Thus, the overall time

13

complexity of the MCTS-based sampler is O(
∑
C∈Clist

I × S × |Ec|).

For the Graph Encoder: The complexity of the graph encoder depends on the

chosen backbone. For a GCN [19], the complexity is O(|E| ×C × Fhid × M), where |E|

is the number of edges, C is the input feature dimensionality, Fhid is the hidden layer

size, and O is the number of categories.

The Total Complexity: Combining the sampler and encoder complexities, the total

time complexity for CAP with base sampler is O(
∑
C∈Clist

S 2×β×|Ec|+|E|×C×Fhid×M),

and for CAP with MCTS sampler is O(
∑
C∈Clist

I × S × |Ec| + |E| ×C × Fhid × M).

4.4. Effectiveness Theoretical Analysis

We use Graph Signal Propagation to theoretically demonstrate the effectiveness of

CAP community contrastive learning strategies.

Objective: Establish theoretical connections between contrastive learning objec-

tives and global graph signal smoothness, addressing reviewer concerns about the lack

of theoretical grounding for long-range dependency modeling.

4.4.1. Graph Signal Smoothness Definition

Let X ∈ RN×d denote node features and L = D − A be the graph Laplacian (degree

matrix D, adjacency matrix A). The smoothness energy is quantified as:

E(X) = Tr(X⊤LX) =
1
2

∑
i, j

Ai, j∥Xi − X j∥
2

where lower values indicate smoother signals (greater feature similarity among con-

nected nodes). Contrastive Learning Objective

The InfoNCE loss optimizes representations by:

Lcont = − log
exp(s(zi, z j)/τ)∑
k exp(s(zi, zk)/τ)

where (zi, z j) are positive pairs (intra-community nodes) and zk are negative samples

(inter-community nodes).

4.4.2. Implicit Smoothness Constraints

The contrastive objective induces Local Smoothness and Global Discriminability.

Local Smoothness: Maximizing intra-community similarity through positive pairs.

Global Discriminability: Minimizing inter-community similarity via negative pairs,

while preserving information flow through community-aware propagation.

14

4.4.3. Spectral Graph Interpretation

Through Laplacian eigendecomposition L = UΛU⊤, contrastive learning implicitly

performs:

Lcont ≈ αTr(Z⊤LlocalZ) + βTr(Z⊤LglobalZ)

where: Llocal enforces intra-community smoothness (preserving low-frequency compo-

nents), Lglobal regulates inter-community information flow (attenuating high-frequency

noise).

From a spectral perspective, the contrastive objective enforces node representations

to align with low-frequency components of the graph signal. By maximizing similarity

within community subgraphs (local smoothness) and differentiating across communi-

ties (global discriminability), the contrastive loss implicitly approximates a weighted

Laplacian regularization term. where Llocal and Lglobal denote intra-community and

inter-community Laplacians respectively. This regularization promotes global smooth-

ness by suppressing high-frequency noise while preserving long-range dependencies

through community-aware message passing.

5. Experiments

5.1. Experimental Setup
5.1.1. Data Description

To evaluate the performance of the CAP on the node classification task, we consider

the following real-world datasets:

PolBlogs [39]: A social network with 1,490 vertices and 19,025 edges. Vertices

represent political blogs and edges represent links between blogs.

Cora [40]: A citation network of scientific publications in machine learning that

consists of 2,708 papers represented by a bag-of-words feature, where edges represent

citation links.

CiteSeer [40]: A citation network with 3,327 papers. Each paper is represented by

a feature vector based on word occurrences, and edges represent citation links.

CS [41]: A citation network of computer science publications that consists of

18,333 scientific papers. Nodes represent authors and are connected by an edge if

they coauthored a paper.

15

PubMed [40]: A citation network of biomedical literature containing 19,717 pa-

pers. Each paper is represented by a word vector, and edges represent citation links.

Physics [41]: A co-authorship network of 34,493 high-energy physics theory pa-

pers. Nodes represent authors, and an edge connects authors if they coauthored a paper.

Flickr [42]: A social network of photos with 89,250 photos and their associated

tag information. Nodes represent users or accounts, and edges represent relationships

between these users.

Reddit [21]: A social network of posts and comments on the website Reddit, com-

prising 232,965 posts and their associated comments. Nodes represent individual posts

or submissions made by users on the Reddit platform, and edges represent replies,

comments, or other interactions between posts.

5.1.2. Baselines

For node classification, the following strong baselines have achieved notable per-

formance:

GCN [19] is a widely used graph convolution network that updates the features of

a node by averaging its neighboring nodes’ features.

GAT [20] aggregates neighbor features using multi-head attention, achieving SOTA

performance on various datasets.

GCN and GAT often serve as the backbone for pre-trained models to verify their

performance and are also employed in this paper.

GraphSage [21] is the first inductive graph neural network that aggregates node

features by sampling neighboring nodes. It predicts graph context and labels using the

aggregated information.

CE-GCN [18] has made preliminary explorations on utilizing community infor-

mation to enhance GNNs, which incorporates the modularity constraint to optimize

the GCN training process. A modularity constraint calculates the community informa-

tion of nodes.

DGI [43] is a general approach that relies on maximizing mutual information be-

tween patch representations and corresponding high-level summaries of graphs.

FusedGAT [22] is an optimized version of GAT based on the dgNN [44] that fuses

16

message passing computation for accelerated execution and lower memory footprint.

ASDGN [23] is an Anti-Symmetric Deep Graph Network, that addresses limita-

tions in traditional DGNs by introducing a stable and non-dissipative design framework

based on ordinary differential equations.

SGCN [24] leverages graph-shaped convolutional kernels with multi-channel con-

volution to achieve superior node classification performance.

For pre-train models, we consider the following advanced open-sourced models

suitable for the node classification task:

GPPT [10] proposes a transfer learning paradigm, that adopts the masked edge pre-

diction to pre-train GNNs, using a graph prompting function to modify the standalone

node into a token pair, and reformulate the downstream node classification to look the

same as edge prediction.

GSR [11] framework uses a pre-train-finetune pipeline to solve the goal of graph

structure learning differs from the goal of downstream task and scalability issues in

terms of time and space during the process of estimation and optimization of the adja-

cency matrix.

GraphPrompt [12] is a novel framework that enhances graph neural networks by

unifying tasks into a common template and using task-specific prompt vectors, signifi-

cantly outperforming state-of-the-art models on multiple datasets.

All-in-One [13] is a novel method to reformulate different-level tasks to unified

ones and further design an effective prompt graph with a meta-learning technique.

However, the process is time-consuming.

5.1.3. Parameter Settings

For the setting of CAP, the community detection method employs the LPA. We

utilize an MCTS-based community sampling procedure with parameters set as I =

100, S = 15, and 30 pre-training epochs. The datasets are partitioned in a ratio of

6 : 2 : 2 for train/validate/test datasets. We employ the Adam optimizer with a learn-

ing rate of 0.001, a hidden layer size of 128, and set the weight decay to 5e−4. For

the baselines, we use the default parameters in the papers. Our experiments were con-

ducted on a workstation equipped with an Intel Core i9-13900K CPU, 128GB RAM,

17

Table 1: Node Classification Performance.

Datasets PloBlogs Cora CiteSeer CS PubMed Physics Flickr Reddit

|V | 1490 2,708 3,327 18,333 19,717 34,493 89,250 232,965

|E| 19025 5,429 4,732 163,788 44,338 495,924 899,756 114,615,892

classes 2 7 6 15 3 5 7 41

GraphSage 94.29±0.34 88.23±0.32 75.54±0.46 93.11±0.79 85.29±0.27 96.01±1.09 44.05±3.69 91.66±0.25

CEGCN 92.13±0.25 88.63±0.51 75.19±0.41 89.13±0.19 86.31±0.23 94.75±0.68 44.27±1.53 87.54±0.35

DGI 92.53±0.74 84.16±0.41 74.32±0.35 93.21±1.13 84.69±0.33 95.28±0.53 44.94±0.72 87.43±0.26

FusedGAT 94.05±1.79 87.05±0.78 73.69±0.86 92.71±0.32 84.57±0.40 95.84±0.10 47.69±0.63 91.26±0.25

ASDGN 93.81±0.72 86.39±0.24 75.72±0.30 92.90±0.15 86.32±0.06 95.82±0.37 47.32±0.40 91.29±0.28

SGCN 93.71±0.27 88.66±0.33 78.10±0.34 92.89±0.45 86.10±0.14 96.70±0.20 51.19±0.40 93.25±0.14

GPPT 92.37±0.43 86.50±0.37 77.31±0.51 91.44±0.73 85.18±0.69 95.01±0.76 47.01±0.98 88.96±0.32

GSR 92.79±0.36 89.30±0.47 76.31±0.35 91.73±0.46 85.93±0.47 95.73±0.29 48.39±0.41 90.33±0.38

GraphPrompt 93.15±0.40 87.22±0.42 78.45±0.49 92.10±0.68 86.05±0.65 95.30±0.72 48.08±0.95 87.33±0.29

All-in-One 92.88±0.38 88.67±0.45 77.29±0.53 92.37±0.70 85.78±0.62 95.55±0.33 47.76±0.50 85.16±0.37

GCN 93.57±0.33 88.38±0.44 75.35±0.57 90.08±0.11 84.35±0.20 95.13±2.11 45.16±0.10 90.13±0.20

CAP (GCN) 96.31±0.29 90.61±0.65 79.21±0.57 93.29±0.53 85.84±0.22 96.33±0.63 49.06±0.41 93.31±0.32

GAT 93.61±0.57 87.04±0.54 75.90±0.36 91.72±0.44 85.18±0.08 95.83±1.78 46.10±1.58 90.66±0.34

CAP (GAT) 94.94±0.12 90.05±0.61 77.62±0.32 93.48±0.21 86.53±0.16 96.42±0.13 50.44±0.53 93.31±0.26

and an NVIDIA RTX A6000 GPU with 48GB VRAM.

5.2. Performance Evaluation

5.2.1. Node Classification

We conducted experiments to assess the performance improvement of CAP on node

classification on eight real-world datasets, as shown in Table 1. CAP consistently de-

livered notable improvements compared to advanced models. For instance, it achieved

a 2.02% accuracy increase on the PloBlogs dataset, surpassing the second-best model,

GraphSage. On the Cora dataset, CAP attained a 1.31% accuracy gain, demonstrat-

ing its capacity to handle diverse data scenarios effectively. CAP’s performance on the

CiteSeer dataset is particularly remarkable, with a significant 3.86% accuracy improve-

ment compared to the GCN backbone and a 1.9% improvement over the second-best

model, GPPT. Furthermore, CAP consistently demonstrated competitive or superior

results on other datasets, including CS, PubMed, Physics, and Flickr, establishing its

robustness across a range of node classification tasks. The CAP variants, CAP (GCN)

and CAP (GAT) enhanced the performance of their respective backbone architectures

(GCN and GAT) by considerable margins. Specifically, compared to its backbone,

CAP (GCN) exhibited enhancements of 3.21%, 1.49%, 1.2%, and 3.9% on the CS,

PubMed, Physics, and Flickr datasets, respectively. These advancements highlight the

18

0 2 0 4 0 6 0 8 0
8 4
8 5
8 6
8 7
8 8
8 9
9 0
9 1

0 5 0 1 0 0 1 5 0 2 0 07 3
7 4
7 5
7 6
7 7
7 8
7 9
8 0

0 3 0 0 6 0 0 9 0 0 1 2 0 08 4

8 5

8 6

8 7

0 2 5 0 0 5 0 0 0 7 5 0 04 3
4 4
4 5
4 6
4 7
4 8
4 9
5 0
5 1

� �

� � �

� � � � � � � � �

� � 	

� � � � � � � �

� � � �

� � � �

� �

� � � � � �
 �

� � � � � � � �

� � � � � � � � � � �

� � � � � � � � � �

� �

� � �

� � � � � � � � �

� � 	

� � � � � � � �

� � � �

� � � �

� �

� � � � � �
 �

� � � � � � � �

� � � � � � � � � � �

� � � � � � � � � �

� �

� � �

� � � � � � � � �

� � 	
� � � � � � � �

� � � �

� � � �

� �
� � � � � �
 �

� � � � � � � �

� � � � � � � � � � �

� � � � � � � � � �

� �

� � �

� � � � � � � � �

� � 	

� � � � � � � �
� � � �
 � � � �

� �

� � � � � �
 �

� � � � � � � �

� � � � � � � � � � �
� � � � � � � � � �

G r a p h P r o m p t

G P P T

G S R

C A P (G A T)

C A P (G C N)

A l l - i n - O n e

G r a p h P r o m p t

G P P T

G S R

C A P (G A T)

C A P (G C N)

A l l - i n - O n e

G r a p h P r o m p t

G P P T

G S R

C A P (G A T)

C A P (G C N)

A l l - i n - O n e

G r a p h P r o m p t

G P P T

G S R

C A P (G A T)

C A P (G C N)

A l l - i n - O n e

Ac
cur

acy

T r a i n i n g T i m e / s
(a) C o r a

Ac
cur

acy

T r a i n i n g T i m e / s
(b) C i t e S e e r

Ac
cur

acy

T r a i n i n g T i m e / s
(c) P u b M e d

Ac
cur

acy

T r a i n i n g T i m e s / s
(d) F l i c k r

0 2 0 4 0 6 0 8 0T r a i n i n g T i m e / s
(e) C o r a

 P r e - t r a i n
 D o w n s t r e a m

0 4 0 8 0 1 2 0 1 6 0 2 0 0

 P r e - t r a i n
 D o w n s t r e a m

T r a i n i n g T i m e / s
(f) C i t e S e e r

0 2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0

 P r e - t r a i n
 D o w n s t r e a m

T r a i n i n g T i m e / s
(g) P u b M e d

0 2 0 0 0 4 0 0 0 6 0 0 0 8 0 0 0

 P r e - t r a i n
 D o w n s t r e a m

T r a i n i n g T i m e / s
(h) F l i c k r

Figure 3: The overall training time and accuracy of different models.

value of integrating community information into graph neural networks, showcasing

CAP as a promising model for achieving exceptional node classification results.

5.2.2. Training Time Analysis

Fig. 3 (a)-(d) compares the training time and accuracy of CAP against baseline

models on the Cora, CiteSeer, PubMed, and Flickr datasets. Ideally, a model should

minimize time consumption while maximizing accuracy, placing it in the upper left

quadrant of each plot. Both CAP (GCN) and CAP (GAT) achieve superior results on

the Cora and CiteSeer datasets, incurring a limited additional time cost compared to

highly efficient models like GCN, GAT, and GraphSage while yielding accuracy im-

provements of up to 4%. On Flickr, both CAP (GCN) and CAP (GAT) outperform the

comparatively strong ASDGN and FusedGAT baselines and significantly exceed the

performance of GCN and GAT. Overall, CAP achieves substantial accuracy gains with-

out a proportionally significant increase in training time compared to models trained

directly.

Fig. 3 (e)-(h) presents the total training time (including pre-training and down-

stream task training) for pre-trained models GPPT, GSR, and CAP. In the academic

domain, Cora showcases the efficiency of CAP (GCN) with a training time of 11.4

seconds, surpassing both non-pretrained models such as DGI (18.31 seconds) and

FusedGAT (13.14 seconds), as well as pretrained models like GPPT (81.95 seconds)

and GSR (17.85 seconds). Similarly, in CiteSeer, CAP (GCN) exhibits a notable de-

crease in training time to 12.52 seconds, in contrast to GPPT’s 178.7 seconds (a 14.27×

19

0 . 0 0 1 0 . 0 0 3 0 . 0 0 5 0 . 0 1 0 . 0 1 5
5 0
8 0
8 5
9 0
9 5

1 0 0
 C o r a P u b M e d
 C i t e S e e r F l i c k r

Ac
cur

acy

L e a r n i n g R a t e 0 . 0 0 1 0 . 0 0 3 0 . 0 0 5 0 . 0 1 0 . 0 1 59 0
9 2
9 4
9 6
9 8

1 0 0 P l o b l o g s
 C S
 P h y s i c s

Ac
cur

acy

L e a r n i n g R a t e 5 0 8 0 1 1 0 1 4 0 1 7 0 2 0 04 5
5 07 5
8 0
8 5
9 0
9 5

1 0 0

Ac
cur

acy

H i d d e n S i z e

 C o r a P u b M e d
 C i t e S e e r F l i c k r

5 0 8 0 1 1 0 1 4 0 1 7 0 2 0 09 0
9 2
9 4
9 6
9 8

1 0 0

Ac
cur

acy

H i d d e n S i z e

 P l o b l o g s
 C S
 P h y s i c s

1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0
4 5
5 07 5
8 0
8 5
9 0
9 5

1 0 0

Ac
cur

acy

P r e - T r a i n E p o c h s

 C o r a P u b M e d
 C i t e S e e r F l i c k r

1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 09 0
9 2
9 4
9 6
9 8

1 0 0

Ac
cur

acy

P r e - T r a i n E p o c h s

 P l o b l o g s
 C S
 P h y s i c s

1 0 2 0 3 0 4 0 5 07 4
7 8
8 2
8 6
9 0
9 4
9 8

 C o r a P u b M e d
 C i t e S e e r

Ac
cur

acy

S u b g r a p h S c a l e 1 0 2 0 3 0 4 0 5 04 4
4 8
5 2
9 2
9 6

1 0 0 C S
 F l i c k r
 P l o B l o g s

Ac
cur

acy

S u b g r a p h S c a l e

Figure 4: Parameter sensitivity analysis of learning rate, hidden size, pre-train epochs, and subgraph size.

speedup) and GSR’s 55.1 seconds (a 4.4× speedup). Moreover, in PubMed, CAP

(GCN) achieves a training time of 68.63 seconds, showcasing a significant enhance-

ment over GPPT (1020.75 seconds, a 14.87× speedup) and GSR (301.23 seconds, a

4.38× speedup). In the context of Flickr, CAP (GCN) further underscores its effi-

ciency, demonstrating training times that are 2.17× and 6.75× faster than GPPT and

GSR, respectively.

Consistently, CAP (GCN) exhibits faster training than CAP (GAT), reflecting the

computational differences in their backbone architectures. The All-in-One model, due

to its fixed and extensive pre-training dataset, incurs significantly longer pre-training

times compared to other methods, often exceeding them by an order of magnitude on

the Cora, CiteSeer, and PubMed datasets.

As shown in Fig. 3 (e)-(h), pre-trained models like GSR, GPPT, and GraphPrompt

often sacrifice efficiency for accuracy. For instance, GPPT’s training time on Cora,

CiteSeer, and PubMed is, on average, three to four times higher than on other datasets.

GSR’s time consumption notably escalates on Flickr, exceeding 7500 seconds. In con-

trast, CAP’s community-aware pre-training strategy effectively reduces pre-training

time, as demonstrated by its consistently lower overall training times. The figure also

highlights that, for CAP (GCN), CAP (GAT), GSR, and GraphPrompt, pre-training

dominates the overall training time. In contrast, GPPT’s downstream task training con-

stitutes the majority of its total training time.

20

5.2.3. Parameter Sensitivity

We investigate the impact of the learning rate, hidden size, pre-train epochs, and

subgraph size on CAP’s performance, as shown in Fig. 4.

Learning Rate: We evaluated CAP’s performance across five learning rates. On

most datasets, CAP’s performance declined as the learning rate increased, except for

Flickr (improved from 0.001 to 0.003) and Physics (improved from 0.005 to 0.01).

Thus, we set the final learning rate to 0.001.

Hidden Layer Size: CAP’s performance demonstrates low sensitivity to the hidden

layer size on Cora, PubMed, CiteSeer, Flickr, and Physics. In contrast, PloBlogs and

CS show significant fluctuations. PloBlogs favors smaller hidden layers, while CS

achieves peak performance with 200 hidden layers.

Pre-training Epochs: Most datasets (Cora, CiteSeer, CS, Flickr, Physics, and PloBlogs)

exhibit a similar trend: performance initially improves with increasing pre-training

epochs, then plateaus or shows minor fluctuations. Peak performance generally reaches

20 epochs (Cora, CiteSeer, CS, PloBlogs) or 30 epochs (Flickr, Physics). PubMed,

however, achieves its highest accuracy at 10 epochs, with performance remaining sta-

ble thereafter. These findings suggest that a relatively small number of pre-training

epochs is sufficient for optimal performance.

Subgraph Scale: We compared CAP’s performance across different subgraph scales.

Most methods peaked at a scale of 15, except Flickr, which peaked at 20, followed

by performance degradation with larger scales. Larger subgraphs introduce noise in

contrastive learning by increasing false positives, while overly small subgraphs hinder

sufficient community information extraction. Hence, we set the subgraph scale to 15 in

experiments.

5.3. Effectiveness Exploration
5.3.1. Confidence Analysis

Confidence analysis is crucial in machine learning as it assesses a model’s cer-

tainty in its predictions, providing insights beyond predictive performance and guiding

decision-making. Higher confidence generally implies greater reliability, while a con-

centrated confidence distribution indicates consistent certainty, contributing to model

stability.

21

0.70 0.75 0.80 0.85 0.90
Confidence

0

50

100

150

200

De
ns

ity Mean: 0.840
Std: 0.004

Mean: 0.797
Std: 0.021

On Class 1 of Cora
CAP(GCN) hist
CAP(GCN) fit
GCN hist
GCN fit

0.75 0.80 0.85 0.90
Confidence

0

100

200

300

400

500

De
ns

ity

Mean: 0.860
Std: 0.004

Mean: 0.811
Std: 0.011

On Class 1 of CiteSeer
CAP(GCN) hist
CAP(GCN) fit
GCN hist
GCN fit

0.4 0.5 0.6 0.7 0.8
Confidence

0

20

40

60

80

De
ns

ity

Mean: 0.665
Std: 0.010

Mean: 0.610
Std: 0.026

On Class 1 of PubMed
CAP(GCN) hist
CAP(GCN) fit
GCN hist
GCN fit

0.0 0.2 0.4 0.6
Confidence

0
10
20
30
40
50
60
70

De
ns

ity

Mean: 0.452
Std: 0.011

Mean: 0.429
Std: 0.091

On Class 1 of Flickr
CAP(GCN) hist
CAP(GCN) fit
GCN hist
GCN fit

0.70 0.75 0.80 0.85 0.90
Confidence

0

20

40

60

80

100

De
ns

ity

Mean: 0.831
Std: 0.012Mean: 0.812

Std: 0.023

On Class 1 of Cora
CAP(GAT) hist
CAP(GAT) fit
GAT hist
GAT fit

0.75 0.80 0.85 0.90
Confidence

0

100

200

300

400

500

600

De
ns

ity
Mean: 0.856
Std: 0.002

Mean: 0.827
Std: 0.013

On Class 1 of CiteSeer
CAP(GAT) hist
CAP(GAT) fit
GAT hist
GAT fit

0.4 0.5 0.6 0.7 0.8
Confidence

0

20

40

60

80

100

120

De
ns

ity

Mean: 0.662
Std: 0.007

Mean: 0.638
Std: 0.027

On Class 1 of PubMed
CAP(GAT) hist
CAP(GAT) fit
GAT hist
GAT fit

0.0 0.2 0.4 0.6
Confidence

0

20

40

60

80

100

120

140

De
ns

ity

Mean: 0.515
Std: 0.006

Mean: 0.447
Std: 0.085

On Class 1 of Flickr
CAP(GAT) hist
CAP(GAT) fit
GAT hist
GAT fit

Figure 5: The confidence distribution of the model over 30 training rounds.

Fig. 5 illustrates the confidence distributions for a specific category after 30 rounds

of training. Notably, CAP (GCN) and CAP (GAT) exhibit denser and higher mean con-

fidence distributions compared to their backbone GNNs, GCN and GAT. The sharper

curves of CAP (GCN) and CAP (GAT) indicate a more concentrated distribution, re-

flecting higher confidence and lower variance in predictions. In contrast, the flatter

curves for GCN and GAT suggest greater uncertainty. This difference stems from

CAP’s community-aware pre-training strategy, which leverages community informa-

tion to learn more discriminative and robust model parameters.

Quantitatively, CAP (GCN) demonstrates significant improvements. On Cora, the

mean confidence increases from 0.797 (GCN) to 0.840, while the standard deviation

decreases from 0.021 to 0.004. Similar trends are observed on CiteSeer and PubMed,

with 3% to 5% improvements in mean confidence and approximately 1% reductions

in standard deviation. Flickr exhibits a particularly pronounced decrease in standard

deviation, reaching 8%.

These results highlight the effectiveness of CAP in achieving higher and more sta-

ble confidence in classification outcomes compared to training with randomly initial-

ized parameters.

5.3.2. Pre-Training Effectiveness

To visually analyze the impact of pre-training on node representations, we employ

t-SNE to visualize node representations before and after pre-training on Cora, CiteSeer,

22

(a) Cora (b) CiteSeer (c) PubMed (d) Flickr

(e) 30-epochs (f) 30-epochs (g) 30-epochs (h) 30-epochs

Figure 6: Visualization of node representations before and after 30-epochs pre-training

Table 2: Statistical metrics for embeddings on CiteSeer.

Metric Silhouette Calinski-Harabasz

Cora before training 0.06 51.64
Cora after 30-epochs pre-training 0.19 112.85

CiteSeer before training -0.06 91.45
After 30-epochs pre-training 0.13 445.13

PubMed before training -0.01 116.71
After 30-epochs pre-training 0.07 277.52

Flickr before training 0.03 61.27
After 30-epochs pre-training 0.17 158.23

PubMed, and Flickr. Fig. 6 depicts these visualization results. For clarity, we randomly

sampled 3000 nodes from the PubMed and Flickr datasets. To qualify the visualization

effectiveness of different methods, classical clustering evaluation indicators Silhouette

score and Calinski-Harabasz score are calculated, with higher values indicating better

outcomes, as shown in Table 2.

Visual inspection reveals a striking clustering effect after just 30 epochs of pre-

training, particularly evident in the CiteSeer dataset. Nodes are distinctly grouped into

five clusters, corroborated by substantial improvements in both the Silhouette score

(from -0.06 to 0.13) and the Calinski-Harabasz index (from 91.45 to 445.13). Similar

clustering patterns, accompanied by varying degrees of improvement in the evaluation

metrics, are observed in the other datasets. These findings indicate that even a limited

number of pre-training epochs can significantly enhance the grouping and discrimina-

tive capacity of node representations.

23

2186

1279

2203
2073

1042

731

901
2199

680

2201

2200

1580

95

456

544 1692

2347

1469

2349 2346
2345

1423

574

512

172

1472

240

755
2187

385

256
2472

1423

(a) GCN

2186

1279

2203
2073

1042

680

2201

2200

2347

2349 2346
2345

1423

5742187
385

256
2472

1423
1692

1469

512

172

1472

240

755

731

901

1580

95

456

544

2199

(b) CAP (GCN)

Figure 7: Node classification predictions on the Cora dataset using GCN and CAP (GCN). Orange and
green-shaded regions represent two distinct communities. Nodes are color-coded according to their pre-
dicted labels. The deepened node and edge representations in CAP (GCN) highlight the densely connected
subgraphs identified by the community sampler, enabling accurate prediction of node labels for nodes 2347
and 2186.

Table 3: Performance with Different Community Detection Methods. |Clist | the number of detected commu-
nities.

Datasets PloBlogs Cora CiteSeer CS PubMed Physics Flickr

CAP (Louvain) 95.97±0.36 90.79±0.37 79.28±0.39 85.43±1.73 85.01±0.91 82.91±1.27 42.33±0.83
|Clist | 277 117 468 26 40 25 26

CAP (LPA) 96.31±0.29 90.61±0.65 79.21±0.57 93.29±0.53 85.84±0.22 96.33±0.63 49.06±0.41
|Clist | 278 115 451 1281 1740 1367 61

5.3.3. Case Study

To illustrate the predictive capabilities of CAP, we applied it to the Cora dataset

[40] and visualized the prediction results. As shown in Fig. 7, while GCN incorrectly

classifies nodes 2347 and 2186 located at the boundary of two communities, CAP

accurately predicts their labels. This misclassification by GCN stems from the strong

influence of node 1692, despite nodes 2347 and 2186 being structurally part of the

yellow community. CAP overcomes this limitation through its community-aware pre-

training process. By incorporating community structure into the learning process, CAP

enables the model to recognize the communal context of nodes, significantly improving

the accuracy of downstream classification tasks.

The pre-training task of CAP is designed to instill in the model an awareness of

the community distribution of nodes. This community-centric learning approach en-

ables the model to make predictions not only based on individual node features but

also by considering the broader community-aware relationships. Consequently, CAP’s

24

Table 4: Performance with or without Community Sampler (CAP - Sampler).

Datasets PloBlogs Cora CiteSeer CS PubMed Physics Flickr

CAP (GCN) 96.31±0.29 90.61±0.65 79.21±0.57 93.29±0.53 85.84±0.22 96.33±0.63 49.06±0.41

CAP - Sampler 92.63±0.83 86.58±0.97 75.92±0.69 91.75±0.72 84.39±0.86 94.21±0.37 47.10±0.94

Table 5: Performance with Different Strategies of Community Sampler.

Datasets PloBlogs Cora CiteSeer CS PubMed Physics Flickr

Sampler (base) 96.39±0.49 90.79±0.37 79.28±0.39 92.71±0.73 84.99±0.76 95.97±0.27 49.73±0.31

Time 16.93s 37.64s 39.68s 913.75s 589.11s 3136.51s 5813.24s

Sampler (MCTS) 96.31±0.29 90.61±0.65 79.21±0.57 93.29±0.53 85.84±0.22 96.33±0.63 49.06±0.41

Time 9.64s 25.32s 30.13s 297.51s 129.93s 835.41s 1427.31s

Speed Up 1.76× 1.49× 1.32× 3.07× 4.53× 3.75× 4.07×

pre-training facilitates a more accurate and insightful classification. This improvement

highlights the potential of incorporating community information in graph neural net-

works and demonstrates the effectiveness of CAP in leveraging such information for

enhanced predictive performance.

5.4. Ablation Study

Fine-grained community partitioning yields better performance. To evalu-

ate the impact of different community partitioning methods on CAP’s performance,

we conducted a comparative analysis using Louvain and LPA algorithms (Table 3).

Specifically, CAP (Louvain) slightly outperforms CAP (LPA) on Cora and CiteSeer.

However, significant performance differences emerge across CS, PubMed, Physics,

and Flickr datasets, attributable to the disparity in community detection results. For in-

stance, on the CS dataset, Louvain identifies 26 communities compared to LPA’s 1281,

resulting in a community size ratio of 0.020. Similar discrepancies are observed in

PubMed (ratio: 0.023) and Physics (ratio: 0.068). This substantial divergence in com-

munity granularity directly influences the performance of the two methods. Notably,

CAP (LPA) achieves significant improvements over CAP (Louvain) on CS (7.83%),

PubMed (0.83%), Physics (13.42%), and Flickr (6.73%), highlighting the importance

of finer-grained community structures for optimal CAP performance.

Community sampling facilitates the provision of more representative samples

for contrastive learning. To investigate the impact of community sampling on CAP’s

25

performance, we compared its performance with and without the sampler component in

Table 4. CAP - Sampler implies that during the contrastive learning process, sampled

pairs are selected directly from the communities, rather than the subgraphs obtained

from Sampler. This approach broadens the potential selection range for sample pairs.

Removing the community sampler from CAP leads to degraded performance across

all datasets. We observe performance drops of 3.68%, 4.03%, 3.29%, and 2.12% on

PloBlogs, Cora, CiteSeer, and Physics, respectively. This decline is particularly promi-

nent for CAP (GCN), which not only exhibits substantial performance deterioration

across all datasets but also falls short of a standard GCN in certain cases. These re-

sults underscore the presence of significant noise within communities, which, if not

effectively mitigated by the sampler,

Approximate subgraphs of communities achieve comparable performance. We

compared the performance and time consumption of two community sampling strate-

gies Samplers including the basic strategy and an approximate subgraph sampling

method based on MCTS. Table 5 reveals that both methods demonstrate comparable

performance with a negligible maximum gap of 1%. The basic strategy exhibited minor

advantages on smaller datasets like Ploblogs, Cora, and CiteSeer. MCTS outperforms

the base sampler on larger networks such as CS, Physics, and Flickr datasets. No-

tably, MCTS significantly reduces time consumption compared to the basic strategy

and achieves reductions of 40%, 33%, and 25% for PloBlogs, Cora, and CiteSeer, re-

spectively. The speeds are even more accelerated for PubMed, CS, Physics, and Flickr.

Table 6: Different Community Based Pre-Training Strategies.

Datasets Cora CiteSeer PubMed Flickr

CAP (GCN) 90.79±0.37 79.28±0.39 85.84±0.22 49.06±0.41

CAP-L 83.31±4.31 63.71±11.34 72.90±7.17 39.33±5.67

CAP-E 85.31±2.17 72.81±2.93 83.41±1.47 42.14±1.70

Contrastive learning based on communities proves more effective than com-

munity labels or embeddings. To assess the effectiveness of our proposed contrastive

pre-training strategy, we compared CAP with two alternative methods: CAP-L and

CAP-E (Table 6). CAP-L directly utilizes community labels as targets for GCN pre-

26

(a) GCN (b) GAT (c) GraphSage (d) DGI (e) FusedGAT (f) ASDGN

(g) GPPT (h) GSR (i) GraphPrompt (j) All-in-One (k) CAP (GCN) (l) CAP (GAT)

Figure 8: Visualization of node representations on Cora.

training, while CAP-E employs one-hot encoded community representations concate-

nated with node embeddings. Both CAP-L and CAP-E exhibit performance degrada-

tion compared to the baseline GCN. This decline is particularly pronounced in CAP-L,

with performance drops of 7.48%, 15.57%, 12.94%, and 9.73% on the four datasets,

respectively, suggesting that directly using community labels for pre-training is inef-

fective. This disparity likely stems from the mismatch between the pre-training task

(community classification) and the downstream task (node classification), rendering

the learned parameters suboptimal for the latter. While less severe, CAP-E also suffers

from performance degradation, potentially due to the high dimensionality of one-hot

community representations, which may overshadow node-specific information. In con-

trast, CAP leverages contrastive learning and community sampling to effectively cap-

ture and distill community information while mitigating noise, ultimately enhancing

GNN performance on downstream tasks.

5.5. Visualization

To visually assess the quality of learned node representations, we employ t-SNE

[45] to visualize node representations on Cora and explore the differences between

the CAP and the baseline variants. Fig. 8 depicts these visualization results. The

untrained Cora dataset nodes are dispersed and unordered. Training with GCN and

GAT leads to the emergence of seven discernible clusters, although nodes belonging

to the red and blue classes remain poorly separated. GraphSage, DGI, FusedGAT, AS-

DGN, and GPPT achieve improved clustering, yet some deep blue nodes still lack clear

27

separation. GSR, conversely, results in a more dispersed node distribution. Notably,

CAP (GCN) demonstrates superior performance, generating well-defined clusters for

all seven classes with clear inter-class boundaries and compact intra-class representa-

tions.

6. Conclusion

In this study, we introduce CAP, a novel graph pre-training framework that ad-

vances upon Professor Edwin R. Hancock’s foundational work by addressing key lim-

itations of existing approaches. Unlike current methods that require computation-

ally intensive tasks or large datasets for marginal gains, CAP innovatively combines

community-aware self-supervised learning with a noise-reducing community sampler

and MCTS to enhance both node representations and computational efficiency. Ex-

tensive experiments demonstrate CAP’s state-of-the-art performance across diverse

datasets with significantly faster training, while ablation studies validate its community-

aware pertaining mechanism. While CAP shows promising results, its current imple-

mentation faces limitations when handling ultra-large-scale graphs due to constraints

in both the community sampling methodology and backbone architecture, suggesting

important directions for future improvement.

7. Acknowledgements

This work was supported by the National Natural Science Foundation of China

(Grant No. 71971002), the Major Project of Scientific Research in Higher Education

Institutions in Anhui Province (Grant No. 2024AH040011), and the Anhui Postdoc-

toral Scientific Research Program Foundation (Grant No. 2024B828).

References

[1] Rongji Ye, Lixin Cui, Luca Rossi, Yue Wang, Zhuo Xu, Lu Bai, and Edwin R

Hancock. C2n-abdp: Cluster-to-node attention-based differentiable pooling. In

International Workshop on Graph-Based Representations in Pattern Recognition,

pages 70–80, 2023.

28

[2] Dongdong Chen, Yuxing Dai, Lichi Zhang, Zhihong Zhang, and Edwin R Han-

cock. Position-aware and structure embedding networks for deep graph matching.

Pattern Recognition, 136:109242, 2023.

[3] Kihyuk Sohn, Huiwen Chang, José Lezama, Luisa Polania, Han Zhang, Yuan

Hao, Irfan Essa, and Lu Jiang. Visual prompt tuning for generative transfer learn-

ing. In CVPR, pages 19840–19851, 2023.

[4] Alec Radford and Karthik Narasimhan. Improving language understanding by

generative pre-training. 2018.

[5] Xiangguo Sun, Jiawen Zhang, Xixi Wu, Hong Cheng, Yun Xiong, and Jia Li.

Graph prompt learning: A comprehensive survey and beyond. arXiv preprint

arXiv:2311.16534, 2023.

[6] Weihua Hu, Bowen Liu, Joseph Gomes, Marinka Zitnik, Percy Liang, Vijay

Pande, and Jure Leskovec. Strategies for pre-training graph neural networks.

In ICLR, 2020.

[7] Yuning You, Tianlong Chen, Yongduo Sui, Ting Chen, Zhangyang Wang, and

Yang Shen. Graph contrastive learning with augmentations. In NeurIPS, page

5812–5823, 2020.

[8] Jun Xia, Chengshuai Zhao, Bozhen Hu, Zhangyang Gao, Cheng Tan, Yue Liu,

Siyuan Li, and Stan Z Li. Mole-bert: Rethinking pre-training graph neural net-

works for molecules. In The Eleventh International Conference on Learning Rep-

resentations, 2022.

[9] Jiezhong Qiu, Qibin Chen, Yuxiao Dong, Jing Zhang, Hongxia Yang, Ming Ding,

Kuansan Wang, and Jie Tang. Gcc: Graph contrastive coding for graph neural

network pre-training. In SIGKDD, pages 1150–1160, 2020.

[10] Mingchen Sun, Kaixiong Zhou, Xin He, Ying Wang, and Xin Wang. Gppt: Graph

pre-training and prompt tuning to generalize graph neural networks. In SIGKDD,

page 1717–1727, 2022.

29

[11] Jianan Zhao, Qianlong Wen, Mingxuan Ju, Chuxu Zhang, and Yanfang Ye. Self-

supervised graph structure refinement for graph neural networks. In WSDM, page

159–167, 2023.

[12] Zemin Liu, Xingtong Yu, Yuan Fang, and Xinming Zhang. Graphprompt: Uni-

fying pre-training and downstream tasks for graph neural networks. In WWW,

2023.

[13] Xiangguo Sun, Hong Cheng, Jia Li, Bo Liu, and Jihong Guan. All in one: Multi-

task prompting for graph neural networks. In SIGKDD, pages 2120–2131, 2023.

[14] Xing Su, Shan Xue, Fanzhen Liu, Jia Wu, Jian Yang, Chuan Zhou, Wenbin Hu,

Cecile Paris, Surya Nepal, Di Jin, et al. A comprehensive survey on commu-

nity detection with deep learning. IEEE Transactions on Neural Networks and

Learning Systems, 2022.

[15] Mark E. J. Newman and Michelle Girvan. Finding and evaluating community

structure in networks. Physical Review. E, Statistical, Nonlinear, and Soft Matter

Physics, 69:026113, 2003.

[16] Jaewon Yang, Julian McAuley, and Jure Leskovec. Community detection in net-

works with node attributes. In ICDM, pages 1151–1156, 2013.

[17] Bing-Bing Xiang, Zhong-Kui Bao, Chuang Ma, Xingyi Zhang, Han-Shuang

Chen, and Hai-Feng Zhang. A unified method of detecting core-periphery struc-

ture and community structure in networks. Chaos: An Interdisciplinary Journal

of Nonlinear Science, 28(1), 2018.

[18] Yanbei Liu, Qi Wang, Xiao Wang, Fang Zhang, Lei Geng, Jun Wu, and Zhitao

Xiao. Community enhanced graph convolutional networks. Pattern Recognition

Letters, 138:462–468, 2020.

[19] Thomas N Kipf and Max Welling. Semi-supervised classification with graph

convolutional networks. In ICLR, 2017.

30

[20] Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro

Lio, Yoshua Bengio, et al. Graph attention networks. In ICLR, 2018.

[21] Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning

on large graphs. In NeurIPS, page 1025–1035, 2017.

[22] Hengrui Zhang, Zhongming Yu, Guohao Dai, Guyue Huang, Yufei Ding, Yuan

Xie, and Yu Wang. Understanding gnn computational graph: A coordinated com-

putation, io, and memory perspective. Proceedings of Machine Learning and

Systems, 4:467–484, 2022.

[23] Alessio Gravina, Davide Bacciu, and Claudio Gallicchio. Anti-symmetric DGN:

a stable architecture for deep graph networks. In ICLR, 2023.

[24] Zhenhua Huang, Wenhao Zhou, Kunhao Li, and Zhaohong Jia. Sgcn: A scal-

able graph convolutional network with graph-shaped kernels and multi-channels.

Knowledge-Based Systems, 279:110923, 2023.

[25] Junfu Wang, Yuanfang Guo, Liang Yang, and Yunhong Wang. Heterophily-aware

graph attention network. Pattern Recognition, 156:110738, 2024.

[26] Zhenhua Huang, Wenhao Zhou, Yufeng Li, Xiuyang Wu, Chengpei Xu, Junfeng

Fang, Zhaohong Jia, Linyuan Lü, and Feng Xia. Sehg: Bridging interpretability

and prediction in self-explainable heterogeneous graph neural networks. In ACM

on Web Conference, pages 1292–1304, 2025.

[27] Zhenhua Huang, Kunhao Li, Wang Shaojie, Zhaohong Jia, Wentao Zhu, and

Sharad Mehrotra. Ses: Bridging the gap between explainability and prediction

of graph neural networks. In ICDE, 2024.

[28] Lixiang Xu, Jiawang Peng, Xiaoyi Jiang, Enhong Chen, and Bin Luo. Graph neu-

ral network based on graph kernel: A survey. Pattern Recognition, page 111307,

2024.

[29] Muhammad Aqib Javed, Muhammad Shahzad Younis, Siddique Latif, Junaid

Qadir, and Adeel Baig. Community detection in networks: A multidisciplinary

review. Journal of Network and Computer Applications, 108(C):87–111, 2018.

31

[30] Vincent D Blondel, Jean-Loup Guillaume, Renaud Lambiotte, and Etienne Lefeb-

vre. Fast unfolding of communities in large networks. Journal of Statistical Me-

chanics: Theory and Experiment, 2008(10):P10008, 2008.

[31] Martin Rosvall and Carl T. Bergstrom. Maps of random walks on complex net-

works reveal community structure. In PANS, volume 105, pages 1118 – 1123,

2007.

[32] Yoshua Bengio, Olivier Delalleau, and Nicolas Le Roux. Label propagation and

quadratic criterion. Semi-Supervised Learning, pages 193–216, 2006.

[33] Jianbo Shi and J. Malik. Normalized cuts and image segmentation. IEEE Trans-

actions on Pattern Analysis and Machine Intelligence, 22(8):888–905, 2000.

[34] Xin Xin, Chaokun Wang, Xiang Ying, and Boyang Wang. Deep community

detection in topologically incomplete networks. Physica A: Statistical Mechanics

and its Applications, 469:342–352, 2017.

[35] Fanghua Ye, Chuan Chen, and Zibin Zheng. Deep autoencoder-like nonnegative

matrix factorization for community detection. In CIKM, page 1393–1402, 2018.

[36] Xingtong Yu, Yuan Fang, Zemin Liu, and Xinming Zhang. Hgprompt: Bridging

homogeneous and heterogeneous graphs for few-shot prompt learning. In AAAI,

volume 38, pages 16578–16586, 2024.

[37] Peng Qin, Yaochun Lu, Weifu Chen, Defang Li, and Guocan Feng. Aagcn: An

adaptive data augmentation for graph contrastive learning. Pattern Recognition,

163:111471, 2025.

[38] Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro

Lio, and Yoshua Bengio. Graph attention networks. In ICLR, 2018.

[39] Lada A Adamic and Natalie Glance. The political blogosphere and the 2004 us

election: divided they blog. In Workshop on LinkKDD, pages 36–43, 2005.

[40] Zhilin Yang, William Cohen, and Ruslan Salakhudinov. Revisiting semi-

supervised learning with graph embeddings. In ICML, pages 40–48, 2016.

32

[41] Oleksandr Shchur, Maximilian Mumme, Aleksandar Bojchevski, and Stephan

Günnemann. Pitfalls of graph neural network evaluation. In Workshop on

NeurIPS, 2018.

[42] Hanqing Zeng, Hongkuan Zhou, Ajitesh Srivastava, Rajgopal Kannan, and Viktor

Prasanna. Graphsaint: Graph sampling based inductive learning method. In ICLR,

2020.

[43] Petar Veličković, William Fedus, William L Hamilton, Pietro Liò, Yoshua Ben-

gio, and R Devon Hjelm. Deep graph infomax. In ICLR, 2019.

[44] Kezhao Huang, Jidong Zhai, Zhen Zheng, Youngmin Yi, and Xipeng Shen. Un-

derstanding and bridging the gaps in current gnn performance optimizations. In

PPoPP, pages 119–132, 2021.

[45] Van Der Maaten Laurens and Geoffrey Hinton. Visualizing data using t-sne. Jour-

nal of Machine Learning Research, pages 2579–2605, 2008.

33

